Crustal and mantle velocity models of southern Tibet from finite frequency tomography
نویسندگان
چکیده
[1] Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite‐frequency tomographic inversions to image the three‐ dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively highP and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high‐velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong‐Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate‐depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite‐eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north‐dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north‐south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya.
منابع مشابه
Short Note Frequency-Dependent Crustal Correction for Finite-Frequency Seismic Tomography
Removing the crustal signature from teleseismic travel times is an important procedure to reduce the trade-off between crustal and mantle velocity heterogeneities in seismic tomography. Because reverberations of longand short-period body-wave arrivals in the crust affect the waveforms of the direct arrivals differently, the crustal effects on travel times measured by waveform cross correlation ...
متن کاملShear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and southeastern China
S U M M A R Y This paper addresses the velocity structure of the crust and upper mantle beneath southern China with special emphasis on the Tibet region. Waveform data from 48 earthquakes as recorded on the WWSSN and GDSN are used in this detailed forward modelling study. Constraints on the upper crustal section are derived from modelling local Love waves in the time domain applying the mode-su...
متن کاملLateral Variation of the Tibetan Lithospheric Structure Inferred from Teleseismic Waveforms
I present a teleseismic waveform study of the lithospheric structure beneath the Tibetan Plateau, using data collected during the 1991-1992 SinoUS Tibet seismic recording experiment. Crustal thickness at each of the 11 broadband stations is estimated from the differential travel time between the Moho P -to-S converted phase and direct P . I demonstrated that this estimation is not sensitive to ...
متن کاملFinite frequency tomography in southeastern Tibet: Evidence for the causal relationship between mantle lithosphere delamination and the north–south trending rifts
[1] While several mechanisms have been suggested to explain the evolution of the Tibetan Plateau, observational constraints on the deep lithospheric processes have been sparse, and previous seismic studies were mostly along profiles perpendicular to the collision front of the Indian and Eurasian plates. In this study, we show tomographic evidence for the delamination of the mantle lithosphere b...
متن کاملMulti-grid and Resolution Full-wave Tomography and Moment Tensor
There is a general consensus that 3D reference models can be used to isolate effects of wave propagation and thus help in improving characterization of seismic sources. Advances in computation and numerical method have made it possible to capture increasingly broadband, full wave generation and propagation in 3D earth models. The main objectives of this project are to construct hierarchical, mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011